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ABSTRACT

In this paper the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM)
to an online sulfur chemistry model and source models for organic matter and sea salt that is used to estimate
the aerosol indirect effect is described. The cloud droplet number concentration is diagnosed empirically from
field experiment datasets over land and ocean that observe droplet number and all three aerosol types simul-
taneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet
number is used to calculate variations in droplet effective radius, which in turn allows one to predict aerosol
effects on cloud optical thickness and microphysical process rates. The aerosol indirect effect is calculated by
differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day versus pre-
industrial emissions. Both the first and second indirect effects are explored. The sensitivity of the results presented
here to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the au-
toconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol
burden, are tested. The global mean aerosol indirect effect for all three aerosol types ranges from 21.55 to
24.36 W m22 in the simulations. The results are quite sensitive to the preindustrial background aerosol burden,
with low preindustrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol
burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background
aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which
satellite validation products are available, are not good predictors of the resulting indirect effect.

1. Introduction

The greatest uncertainty in the assessment of climate
forcing by anthropogenic aerosols is their effect on
clouds, referred to as the aerosol indirect effect (AIE).
For a given cloud liquid water content (LWC), an in-
crease in the cloud droplet number concentration (N)
implies a decrease in the effective radius (reff), thus
increasing the cloud reflectivity (Twomey 1977); this is
known as the first indirect effect. Several studies have
attempted to observe the Twomey effect in clouds mod-
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ified by ship tracks (Coakley et al. 1987; Radke et al.
1989; King et al. 1993; Coakley et al. 2000; Durkee et
al. 2000) or continental sources of pollution (Saxena
and Menon 1999; Brenguier et al. 2000). The second
indirect effect is based on the idea that decreasing the
mean droplet size in the presence of enhanced aerosols
decreases the cloud precipitation efficiency, producing
clouds with a larger LWC and longer lifetime (Albrecht
1989; Pincus and Baker 1994). Recent results from the
Monterey Area Ship Track (MAST) experiment (Ferek
et al. 2000) and Tropical Rainfall Measuring Mission
(Rosenfeld 2000) provide anecdotal evidence that an-
thropogenically forced decreases in reff can significantly
alter the liquid water path (LWP) and suppress rainfall.
Observations of aerosol-induced changes in cloud life-
time have not been reported, however.
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Observational assessment of both indirect effects is
problematic because (a) direct measurements of aerosols
and cloud properties are localized in space and time and
cannot be used to infer global radiative impacts, and (b)
it is difficult to isolate the aerosol effect on clouds from
the natural variability in reff and LWC caused by changes
in the cloud thermodynamical structure and the dynam-
ics. Satellite datasets have begun to provide some cloud-
top or vertically integrated measures of relevant cloud
properties (Han et al. 1994, 1998a,b, 2000; Kaufman
and Fraser 1997), but by themselves do not give a mea-
sure of the radiative impact of aerosols on clouds. Fur-
thermore, global climatologies of aerosol properties ex-
ist only over ocean, provide only the column optical
thickness, do not differentiate among aerosol types, and
have large uncertainties due to contamination by thin
clouds (Stowe et al. 1997). Thus, the only way to es-
timate the global AIE is by combining model simula-
tions with satellite observational constraints (cf. Bou-
cher 1995; Kogan et al. 1997). Unfortunately, existing
general circulation model (GCM) simulations of the AIE
span an unacceptably broad range, from near 0 to 25
W m22 (Jones et al. 1994; Boucher and Lohmann 1995;
Chuang et al. 1997; Lohmann and Feichter 1997; Rots-
tayn 1999; Kiehl et al. 2000; Ghan et al. 2001a). No
observational constraints have been demonstrated to
limit this range. To date, all that can be said is that the
larger AIE predictions are less likely to be correct in
light of the observed global temperature increase that
has accompanied an accumulated anthropogenic green-
house gas forcing of only 2.5 W m22 (Hansen et al.
2000).

Most previous GCM research on the AIE has em-
phasized the uncertainties associated with determining
the aerosol distribution and its effect on cloud proper-
ties. GCMs take two different approaches to determine
N. Some models predict N from aerosol chemical and
microphysical properties by means of a sophisticated
aerosol nucleation and growth model (Chuang et al.
1997; Lohmann et al. 1999; Ghan et al. 2001a,b), there-
by making it possible for N to be a prognostic variable.
This has the appeal of being physically based, but it
requires underlying assumptions about (a) the unre-
solved small-scale turbulent updraft velocity, a quantity
that is especially difficult to predict within clouds, and
(b) the efficiency with which different aerosol types
nucleate cloud droplets, which depends on details of the
aerosol composition and the unknown extent of internal
versus external mixing. Other models use a simple em-
pirical diagnostic approach, directly parameterizing N
as a function of either aerosol mass or aerosol number
concentration based on field observations (Jones et al.
1994; Lohmann and Feichter 1997; Rotstayn 1999;
Kiehl et al. 2000). This bypasses the difficult physics
of cloud droplet formation, and by using sulfate as a
proxy for all aerosols, the diagnostic approach in prin-
ciple allows for the indirect effect of all aerosols in a
model that only explicitly simulates the sulfate distri-

bution. The disadvantage of the diagnostic approach is
that it is based on limited information from local or
regional field studies that sample a specific mix of aero-
sol types in specific meteorological conditions, which
compromises their usefulness in global applications.
Some models determine N diagnostically using monthly
mean sulfate fields computed offline; in such models
the aerosol affects the cloud but the cloud is not allowed
to feed back on the aerosol distribution.

In both approaches a major additional uncertainty
concerns natural sources of aerosols or their precursors.
In this regard, evaluation of the AIE is much more dif-
ficult than for climate forcing due to greenhouse gas
emissions. For greenhouse gas forcing the preindustrial
concentration levels are well known, and anthropogenic
increases thus far have not yet even doubled the effec-
tive background concentration. For aerosols, on the oth-
er hand, there is probably no vegetated continental lo-
cation anywhere that retains a pristine environment, and
thus there is no way to reliably determine the prein-
dustrial continental background aerosol level. Over
oceans, the natural sulfate contribution from dimethyl
sulfide (DMS) emissions is still uncertain (Charlson et
al. 1987; Kettle and Andreae 2000) and the role of sea
salt depends in a complex fashion on meteorological
conditions and the coincident presence of sulfate (Ghan
et al. 1998; O’Dowd et al. 1999). Furthermore, anthro-
pogenic aerosol increases to date dwarf the background
levels near and downwind of pollution sources. Thus,
considering that the susceptibility of clouds is greatest
in relatively clean conditions (Platnick and Twomey
1994), the uncertainty in the background aerosol con-
centration itself introduces significant variability in the
simulated present-day AIE (Chuang et al. 1997; Kiehl
et al. 2000).

By comparison, much less attention has been paid to
the effect of cloud parameterization assumptions on the
simulated AIE. Lohmann and Feichter (1997), Rotstayn
(1999), and Ghan et al. (2001b) have explored the sen-
sitivity of the second indirect effect to different auto-
conversion and cloud-cover parameterizations. Differ-
ent autoconversion schemes have markedly different de-
pendence of rain formation on N and LWC, and are
intended for use on the cloud scale, rather than the GCM
grid scale; but subgrid variability can potentially have
a great impact on microphysical process rates (Pincus
and Klein 2000; Rotstayn 2000). Cloud formation
schemes in GCMs are not yet either physically based
or even empirical (because subgrid-scale vertical ve-
locity effects on cloud formation are usually not rep-
resented), so the effect of initial cloud formation as-
sumptions on the AIE can potentially vary widely. Mace
et al. (1998) highlight the possibility of using cloud
radar from polar orbiting satellites for global scale mod-
el vertical cloud-distribution comparison. However, to
date, little attention has been paid to the ability of GCMs
to simulate the detailed vertical distribution of cloudi-
ness in the lower troposphere, despite the fact that the



694 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

TABLE 1. Chemical species and sources for sulfate, OM, and sea
salt aerosols. ANTH and NATL refer to anthropogenic and natural
aerosol sources, respectively.

Species Sources References

ANTH sulfate Seasonally varying
GEIA SO2 emissions

Benkovitz et al. 1996

Aircraft source Baughcum et al. 1993
Biomass burning Spiro et al. 1992

NATL sulfate DMS oceanic source Kettle et al. 1999; Liss
and Merlivat 1986

Noneruptive volcanic
sources

Spiro et al. 1992

ANTH OM Fossil fuel and biomass
burning

Liousse et al. 1996;
Cooke et al. 1999;
Penner et al. 1993

NATL OM Terpene emissions Guenther et al. 1995
Sea salt Ocean Gong et al. 1997a

aerosol concentration decreases sharply above the sur-
face and the AIE depends on the colocation of aerosol
and cloud. Coakley et al. (2000) found that the presence
or absence of ship tracks in MAST data was quite sen-
sitive to the relative heights of the aerosol layer and the
cloud top, suggesting that these details might be im-
portant for simulation of the AIE. The feedback of cloud
processes on the aerosol distribution, for example, via
the in-cloud oxidation source and wet deposition sink,
has been mostly ignored, although Lohmann and Feich-
ter (1997) comment on the effect of different cloud for-
mation parameterizations on the resulting aerosol field.

In this paper we describe initial results from a version
of the Goddard Institute for Space Studies (GISS) GCM
that has been coupled to an aerosol source–chemistry
model, with particular emphasis on how model cloud-
parameterization assumptions influence the simulated
AIE and how existing observations do or do not con-
strain AIE estimates. The basic coupled model structure
and design of sensitivity experiments are described in
sections 2 and 3, respectively. Resulting distributions
of the aerosol concentration and the AIE for the different
simulations are described in section 4. In section 5 we
evaluate our results against various satellite diagnostic
quantities. We discuss the implications of our work and
possible future directions of research in section 6.

2. Model description

a. General circulation model

We use the GISS Model II GCM (Hansen et al. 1997),
a gridpoint model with 48 3 58 horizontal resolution
and nine vertical sigma coordinate levels and a dynam-
ical top at 10 mb. This GCM was developed from the
GISS GCM Model II (Hansen et al. 1983), with several
improvements: notably a new prognostic cloud water
scheme for stratiform clouds (Del Genio et al. 1996),
improved mass flux cumulus parameterization (Del
Genio and Yao 1993), a second-order closure planetary
boundary layer, and improved ground hydrology (Ro-
senzweig and Abramopoulos 1997). Stratiform cloud
generation is relative humidity (RH) dependent, based
on the approach of Sundqvist et al. (1989), but also
includes a dependence on moist stability. Clouds form
when RH exceeds a threshold that is specified for all
model levels except for the lowest layer. In the lowest
layer the threshold RH is calculated as the RH for which
a parcel would saturate if lifted from the bottom to the
top of the layer. The GCM allows for fractional cloud-
iness in the vertical as well as horizontal, that is, a cloud
physical thickness that is less than the GCM layer thick-
ness, depending on stability. Microphysical sinks for
liquid water include autoconversion, evaporation, cloud-
top entrainment, accretion, and the Bergeron–Findeisen
process. All clouds form as liquid for temperatures
.248C over oceans and 2108C over land, and as ice
for temperatures ,2408C. In between these tempera-

tures, a probability function is used for formation of ice
(Del Genio et al. 1996). A fixed value of N (0.06 cm23)
is used for all ice clouds. The cumulus parameterization
uses a cloud base neutral buoyancy mass flux closure
and includes convective downdrafts, entraining and no-
nentraining plumes, detrainment of condensate into an-
vils, and evaporation of precipitation. The radiation
scheme includes all important radiatively active species;
it uses the correlated k-distribution approach for gaseous
absorption and a single Gauss point adaptation of the
doubling and adding method for multiple scattering.

b. Aerosol model

We simulate the indirect effects associated with sul-
fate, organic carbon, and sea-salt aerosols. Aerosol dis-
tributions are calculated online and are fully interactive
with the GCM dynamics and physics. Details of in-
cluded aerosols are listed below and are summarized in
Table 1.

1) SULFATE

The sulfate chemistry model (Koch et al. 1999) in-
cludes SO2, sulfate, dimethylsulfide (DMS), and H2O2

as prognostic species. It uses a resistance in series dry
deposition scheme and has a wet deposition and in-cloud
chemistry scheme that is coupled to the GCM cloud
schemes. For large-scale clouds, the autoconversion
rates and the grid-box cloud fraction are used to cal-
culate the first-order loss for precipitation scavenging.
For moist convective clouds, all the dissolved tracers
(in the updraft) are removed with the rainwater except
for those that are evaporated or detrained. Below-cloud
scavenging and evaporation of gases are also included.
A detailed comparison of the simulated sulfate distri-
bution with observations is presented in Koch et al.
(1999).
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2) ORGANIC CARBON

The carbonaceous aerosol model of Koch (2001, man-
uscript submitted to J. Geophys. Res., hereafter K01)
includes both absorptive black carbon and the more re-
fractive and more soluble organic carbon (OC; we con-
sider only the latter here). The OC emissions for biomass
burning and industry are from Liousse et al. (1996). As
in Liousse et al. (1996), we use the organic matter (OM),
where OM 5 1.3 3 OC to account for the presence of
noncarbon elements. The emissions for OC are highly
uncertain and measurements available for model vali-
dation are extremely sparse, with few datasets spanning
a full year. K01 found the total model bias against ob-
servations to be low; however, the scatter was high, with
the model typically within a factor of 10 of observations.
The source for natural OM emissions from terpenes is
from Guenther et al. (1995). A 10% yield rate of OM
from terpenes is assumed, which is higher than that used
in Liousse et al. (1996) but at the low end of that in
Andreae and Crutzen (1997).

3) SEA SALT

Sea-salt concentrations in six size bins are from Gong
et al. (1997a) who used the Monahan et al. (1986) source
and the National Center for Atmospheric Research Cli-
mate System Model to treat sea-salt dependence on wind
speed. In this study, we input monthly sea-salt concen-
trations from the first four bins (sizes 0.03–0.25 mm,
0.25–0.50 mm, 0.50–1.0 mm, and 1.0–2.0 mm), since
modeling (Ghan et al. 1998) and observational studies
(O’Dowd et al. 1999) indicate that film and jet modes
are most important (in terms of sea-salt number and
surface area concentrations, respectively) in modifying
the sulfate distribution. Sea salt is assumed to be fully
soluble for wet deposition purposes. In addition to re-
moval by wet and (resistance-in-series) dry deposition,
gravitation settling is included.

c. Aerosol direct effect

Although the direct aerosol radiative effect is treated,
we restrict our discussion to the AIE since Koch et al.
(1999) and K01 discuss the direct effect. The 0.55-mm
aerosol optical thickness is obtained from the product
of the aerosol mass and the specific extinction cross
section as in Charlson et al. (1984) and aerosol inter-
action with radiation is treated via Mie scattering theory.
The effect of relative humidity on optical thickness is
only applied for sulfate aerosols. At present, the water
uptake rate for sea salt and organic carbon aerosols are
not treated because of the uncertainty in the uptake rate.
Instead we use a specific extinction that is applicable
for an average relative humidity (K01), but would prob-
ably lead to an underestimation of optical thickness at
high relative humidities (.90%; A. Lacis 2001, private
communication).

d. Aerosol–cloud interaction

We use a simple diagnostic approach to calculate N
from aerosol mass based on field observations. How-
ever, we attempt to partly address the limitations of this
approach by developing multiple regressions against all
three simulated aerosol types (rather than assuming sul-
fate to be a universal proxy) and by including an em-
pirical correction factor that mimics the effect of varying
cloud turbulence strength on N.

Field data from Leaitch et al. (1996) in the Northeast
Atlantic, and from Borys et al. (1998) in Tenerife, were
used to develop a multiple regression relationship be-
tween N, sulfate, OM, and sea salt. Since OM mea-
surements were not reported in Borys et al., we param-
eterize OM as a function of sulfate using data from
Tenerife obtained during the Second Aerosol Charac-
terization Experiment (Putaud et al. 2000). This as-
sumption is based on field measurements (Liu et al.
1996; Matsumoto et al. 1997; Putaud et al. 2000) that
indicate a positive correlation between sulfate and OM.
Since the data were obtained from the same location at
similar times of the year, albeit from different experi-
ments, variability in the ratio of OM to sulfate should
not be an important factor. The Leaitch et al. dataset
did not have complete measurements of all species of
OM and therefore could underestimate the actual OM
for the Northeast Atlantic (W. R. Leaitch 2000, personal
communication). Identical regressions are applied over
land and ocean, except that sea salt is included only in
the latter. The resulting multiple regression relationships
to predict N for land, NLand, and ocean, NOcean, are

{2.4110.50 log(Sulfate)10.13 log(OM)}N 5 10 , and (1a)Land

{2.4110.50 log(Sulfate)10.13 log(OM)10.05 log(Sea-salt)}N 5 10 , (1b)Ocean

where sulfate, OM, and sea salt are the mass concen-
trations in mg m23 and N is in cm23; N predicted using
the above equations is more sensitive to changes in sul-
fate than to OM due to the higher slope for sulfates,
however, the AIE has not been evaluated separately for
either sulfates or OM alone. These regressions differ
from the commonly used empirical relationships given
in Boucher and Lohmann (1995) in their modeling study
on the AIE. Their relationships were based on simul-
taneously measured sulfate and either cloud condensa-
tion nuclei (CCN) or N. When only CCN data were
available, they assumed that the measured CCN con-
centration used was the same as N in deriving their N–
sulfate relationships. This assumption is not true, as
under varying supersaturations, updraft speeds, etc., the
empirical relationship between CCN and N is nonlinear
(Menon and Saxena 1998; Snider and Brenguier 2000).
The advantage of relating N with aerosol mass, as given
in (1a) and (1b), is that these implicitly take into account
the physics (updraft velocity, size spectra, growth rate,
supersaturation profiles, etc.) that actually determines
N, while explicitly representing the contribution of the
three different aerosol species, allows us to more con-
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TABLE 2. Designation of experiments used for model simulations of the AIE. Also included is the length of model runs. The different
columns indicate the sensitivity tests conducted to evaluate the AIE. D96 refers to Del Genio et al. (1996), TC80 to Tripoli and Cotton
(1980), and K99 to Koch et al. (1999).

Experiment
Number of years

averaged AIE
Cloud vertical

distribution Autoconversion Scavenging

CTRL-R
NEWCLD-R
NEWCLD-M-7.5
NEWCLD-M-5.0
NEWCLD-M-5.0-P

5
5
2
2
5

1st
1st
1st and 2nd
1st and 2nd
1st and 2nd

f (layer 1 thickness)
f (Ri)
f (Ri)
f (Ri)
f (Ri)

D96
D96
TC80 (rcrit57.5 mm)
TC80 (rcrit55.0 mm)
TC80 (rcrit55.0 mm)

K99
K99
K99
K99
Decreased scavenging

fidently apply the regression to other regions with dif-
ferent mixes of aerosol types.

Leaitch et al. (1996) have highlighted the role of tur-
bulence in modifying N for a given aerosol concentra-
tion. Higher updraft speeds increase the activation of
aerosol particles, which thus increases N. Under stable
conditions, N is reduced because the lower updraft
speeds produce supersaturations that are not high
enough to activate smaller size particles. We use the
GCM’s parameterization of cloud top entrainment
(CTE) as an indicator of within-cloud turbulence. The
parameterized CTE mixing depends on the moist static
energy jump across the cloud-top interface and on the
total water content in the cloud (Del Genio et al. 1996).
To mimic the Leaitch et al. observations, we scale N as
predicted by (1a) and (1b) by a factor that ranges from
1.5 in high CTE (unstable, strong turbulence) conditions
to 0.5 in zero CTE (extremely stable, weak turbulence)
conditions.

Given N, the volume-weighted mean cloud droplet
radius rvol is determined by, rvol 5 [(3LWC)/(4prlN)]1/3,
where rl is liquid water density. This value is applied
to determine aerosol effects on cloud microphysical pro-
cesses (autoconversion, cloud evaporation). The reff

needed to compute cloud radiative properties is obtained
from rvol assuming a standard gamma size distribution
with an effective variance of 0.2 given as reff 5 1.28
rvol . Cloud optical depth (t) is then evaluated by, t 5
(1.5 LWP)/(rl reff). For a given t and reff , cloud radiative
properties are computed using the spectral dependence
predicted by Mie theory (Hansen and Travis 1974).
Aerosols are only allowed to affect liquid-phase clouds,
so the longwave contribution to AIE is small in all the
experiments.

3. Experimental setup

The AIE is defined as the difference in the net cloud
radiative forcing between simulations that use present-
day (PD; natural plus anthropogenic) aerosols and sim-
ulations that use preindustrial (PI; natural) aerosols.
Baseline model runs are forced by climatological sea
surface temperature fields for the period 1978–98 and
are carried out for 6 yr, with the results based on the
final 5-yr averages. For sensitivity studies, shorter model
runs for 3 yr (with results based on 2-yr averages) are

carried out. We examine five (PD, PI) pairs of simu-
lations (Table 2), defined in sections 3a–e.

a. CTRL-R

This run uses the standard model configuration de-
scribed in the previous section and accounts only for
the first indirect effect. In this run, the autoconversion
rate (Q) is an increasing function of the cloud LWC
with no dependence on N except for specified land–
ocean differences in efficiency (Del Genio et al. 1996).

b. NEWCLD-R

In common with most GCMs, the GISS model tends
to overpredict cloudiness in the lowest model layer. For
most applications this is not a serious defect, but given
the sharp decrease in aerosol concentration away from
the surface, even small errors in cloud altitude can in-
fluence the simulated AIE. The frequency of occurrence
of low-level cloud tops in GCM layers 1, 2, and 3 (top
pressure 5 934, 854, and 720 hPa, respectively) in
CTRL-R is 36%, 30%, and 34%, respectively. Data from
the International Satellite Cloud Climatology Project
(ISCCP) mapped to the GCM layers indicate an occur-
rence distribution of 16%, 26%, and 58%, respectively,
instead.

We therefore modified our calculation of the threshold
RH for cloud fraction as follows: In the standard scheme
described earlier, the threshold RH for the lowest layer
is based on implied lifting over the layer depth, which
is only appropriate if the lowest layer is dry convective
with respect to layer 2, that is, if there are subgrid ver-
tical motions that extend over a full layer. In NEWCLD-
R, the full layer thickness is used to calculate the thresh-
old RH only if layer 1 is unstable with respect to the
next higher layer. In all other cases, the implied subgrid
lifting only goes from the bottom of the layer to a height
Z determined by the degree of stability, as follows: if
the Richardson number between layer 1 and layer 2
(Ri12) # 1 (an approximate upper limit for small-scale
turbulence in the model of Cheng et al. 2002), then
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Ri , 0.25 ⇒ Z 5 top height of layer 1 (Z ),12 1

0.25 # Ri , 1 ⇒ Z 5 interpolated height between12

Z and midpoint of layer 11

(Z ), andm

Ri 5 1 ⇒ Z 5 Z ,12 m

If Ri12 . 1, a similar calculation is performed for Ri
between the surface air layer and layer 1 (Ris1), such
that

Ri , 0.25 ⇒ Z 5 Z ,s1 m

0.25 # Ri , 1 ⇒ Z 5 interpolated height betweens1

Z and the surface layerm

height (Z ), and0

Ri $ 1 ⇒ Z 5 Z .s1 0

The prescribed threshold RH for all higher layers is
decreased (set at 0.57) at the same time so as to produce
a total cloud cover and planetary albedo roughly equiv-
alent to those in CTRL-R. The net effect of the param-
eterization change is to reduce cloudiness in layer 1
under more stable PBL conditions and to increase cloud-
iness in higher layers. The resulting cloud-top distri-
bution in NEWCLD-R is 26%, 43%, and 31%, respec-
tively, in better agreement with the ISCCP data. The
remaining model-data discrepancy is at least in part an
ISCCP bias caused by inaccuracies in its input humidity
profiles, which cause it to overpredict cloud height by
60–80 hPa in marine stratus regions (Wang et al. 1999).

c. NEWCLD-M-7.5

This scheme differs from NEWCLD-R only in that
it allows for the second as well as the first indirect effect.
To evaluate the second indirect effect, an autoconversion
parameterization from Tripoli and Cotton (1980; here-
after referred to as TC) is implemented. Here, autocon-
version does not occur unless the in-cloud liquid water
mixing ratio q1 exceeds a certain critical limit qcrit de-
fined as

3q 5 (4pr r N)/(3r),crit l crit (2)

where rcrit is the critical value of the droplet radius that
would initiate precipitation and r is the air density. The
autoconversion rate is then given by

4/3 7/30.104gE r (q ) H(q 2 q )AU 1 1 critQ 5 , (3)
1/3«(Nr )1

where H is the Heaviside function, EAU is the droplet
collection efficiency set to 0.55, g is the acceleration
due to gravity, and « is the dynamic viscosity of air.
High values of N increase the threshold limit and also
decrease Q. Low values of rcrit result in increased pre-
cipitation and thus a smaller indirect effect. Values gen-
erally used in different climate models vary from 4.5
to 10 mm (Rotstayn 1999; Boucher et al. 1995; Rasch

and Kristjansson 1998). In NEWCLD-M-7.5 we assume
rcrit 5 7.5 mm.

d. NEWCLD-M-5.0

This experiment is identical to NEWCLD-M-7.5 but
with rcrit 5 5.0 mm, which enhances the autoconversion
rate and thus reduces the importance of the second in-
direct effect.

e. NEWCLD-M-5.0-P

The first-order rate-loss parameterization in the strat-
iform in-cloud scavenging scheme depends on the
amount and areal coverage of precipitation in the cloudy
part of the grid box. The baseline model assumes that
the fraction of the grid box that is precipitating equals
the product of the subgrid cloud areal fraction and the
ratio of precipitating to total condensed water (Koch et
al. 1999). Thus, in dense clouds, most of the cloud area
precipitates and participates in scavenging below. This
is probably an overestimate, based on the satellite anal-
ysis of Lin and Rossow (1997) who find that only ;5%
of pixels between 508S and 508N contain precipitation.
In NEWCLD-M-5.0-P we assume that precipitation oc-
curs in only 10% of the cloudy area. This reduces scav-
enging and thus increases aerosol concentration. This
probably represents a lower limit for the role played by
precipitation, but it serves as a useful sensitivity test for
the resulting radiative impact of a process not generally
associated with radiative issues.

4. Results

a. Aerosol mass distribution

The aerosol column burdens for the PD and PI aerosol
sources for the five model runs are listed in Table 3.
Detailed comparisons of sulfate and OM distribution
with observations for a model version similar to CTRL-
R can be found in Koch et al. (1999) and K01. Although
the magnitudes of the column burden differ, all five
simulations have similar horizontal distributions and
vertical profiles. As one example, we show the present-
day aerosol mass distributions in mg m23 for sulfate,
OM and sea salt for January and July for model layer
1 (P 5 959 hPa) for the NEWCLD-M-5.0-P run in Fig.
1. Figure 2 is similar to Fig. 1 but shows the vertical
distribution of the mass (106 kg for sulfate and OM,
and 107 kg for sea salt). Sulfate concentrations are the
highest during summer over the NH continents due to
increased oxidant availability, whereas they are higher
over the SH oceans in summer due to the higher natural
burden in summer. The model, similar to other models
with prognostic H2O2, has a somewhat higher SO2 bur-
den compared with models using fixed H2O2 due to
depletion of the in-cloud oxidant in polluted regions.
The natural DMS source for sulfate is low compared to



698 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

TABLE 3. Globally averaged annual aerosol column burden (mg m22) for sulfate, OM, and sea salt for PD and PI emissions. Also
included is the difference (D) between the PD and PI simulations.

Experiment

Sulfate

PD PI D

OM

PD PI D

Sea salt

PD PI D

CTRL-R
NEWCLD-R
NEWCLD-M-7.5
NEWCLD-M-5.0
NEWCLD-M-5.0-P

3.75
4.02
2.66
1.11
5.03

0.96
1.14
0.42
0.30
1.05

2.79
2.88
2.24
0.81
3.98

1.90
2.15
1.57
0.90
2.46

0.23
0.29
0.14
0.12
0.27

1.67
1.86
1.43
0.77
2.19

7.64
7.91
4.16
3.53
9.36

7.56
7.92
3.70
3.59
9.02

0.08
20.01

0.46
20.06

0.34

observations (and other models) in remote regions. This
is due in part to weaker than observed GCM winds, and
to the use of a low sea-to-air transfer rate for DMS.
Because of this, all the sulfur species over the remote
oceans tend to be lower than observed. Koch et al.
(1999) found the sulfate surface concentrations on land
to agree well with observations; however, the sulfate
concentrations in the free troposphere above continents
may be somewhat excessive.

Concentrations of OM are greater than sulfate in the
SH due to the larger biomass burning source. Mass con-
centrations for OM are higher than sulfate mass in the
first layer, though the OM column burden is much lower.
This is because OM has only a surface source, while
sulfate is formed only after oxidation of the SO2 pre-
cursor that is often transported to higher layers. Model
OM concentrations are lower than observations in the
Pacific and Arctic but not over the Atlantic (K01).

Sea-salt concentrations are higher over the high lat-
itude oceans during the winter months due to the stron-
ger wind speeds there. For sea salt, comparison is per-
formed with respect to the sodium content (assuming
sodium content to be 0.3061 that of sea salt). Obser-
vations and model simulations of sodium content for
five locations listed in Gong et al. (1997b) for
NEWCLD-M-5.0-P (which has the highest sea-salt con-
centration of all the experiments) are shown in Fig. 3.
Model simulations are in fairly good agreement and do
capture the seasonality in the distribution.

b. Evaluation of cloud droplet number concentration

Since our prediction of N depends on the concentra-
tions of three aerosol species and varies with the implied
cloud turbulence strength, it is instructive to compare
the resulting N–sulfate relationship to field measure-
ments with simultaneous N and sulfate observations.
Data for the land points are from Northeast America
(Leaitch et al. 1992), Southeast United States (Menon
and Saxena 1998), and the United Kingdom (Roelofs
et al. 1998). Those for the ocean points are Northeast
Atlantic (Leaitch et al. 1996), Puerto Rico (Novakov et
al. 1994), and Tenerife (Borys et al. 1998). Most mea-
surements were taken during summer with two excep-
tions: the Novakov et al. (1994) dataset also included
cases from March–April, and the Northeast American
dataset included winter and fall measurements. Main

differences between winter–fall and summer measure-
ments are stronger updrafts, higher cloud bases, and
higher N during summer and lower median sulfate val-
ues for winter, due to the lower cloud bases and mixing
heights, which could lead to higher surface concentra-
tions (Leaitch et al. 1992). The N predicted from the
NEWCLD-M-5.0-P model run, as a function of sulfate
mass along with the observed N–sulfate relationships,
are shown in Figs. 4 and 5 for the land and ocean lo-
cations, respectively. Hourly averaged model values of
N and sulfate were sampled four times during the day-
time in July for model grid points and layers closest to
the observational areas and altitudes.

Model sulfate values are within the range of obser-
vations for Northeast America, the United Kingdom,
and Puerto Rico but are higher than observed for the
Southeast United States and the Northeast Atlantic.
Model N and sulfate values are systematically under-
estimated over Tenerife. The underprediction of N is
probably related to an underestimate of OM simulated
by the model there as well, though the sensitivity to
sulfate appears to be similar to observations. For Puerto
Rico, observations are limited and the sensitivity of N
to sulfate appears low (Novakov et al. 1994). Further-
more, the data suggest that OM dominates sulfate over
this region, though the model prediction is the opposite.
Differences in slopes between model and observations
are within 15% for the combined land locations, but the
model systematically overestimates the slope over ocean
relative to the available data. The discrepancy is pri-
marily due to our underprediction of N over Tenerife,
and the NE Atlantic points, since our regression utilizes
data from Leaitch et al. for this location that do not
measure all species of OM. Considering the different
spatial scales of the model and data and the limited
sampling time, the general trend is fairly well simulated
using the diagnostic approach, especially over land. The
strong correlation between N and sulfate indicated by
the model in most regions suggests that the variability
in N is underestimated. This is not surprising given the
strong correlation between N and sulfate in the Tenerife
observations that dominates the dataset used to derive
(1a) and (1b). Since OM is probably underestimated in
the dataset, N is more dependent on sulfate and a stron-
ger correlation is exhibited between N and sulfate. On
the other hand, correlations in the observations are ex-
pected to be lower than those in the model, given the
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FIG. 1. Global distribution of sulfate, OM, and sea-salt mass (mg m23) in model layer 1 for Jan and Jul for the NEWCLD-M-5.0-P model
run. Global annual averages are listed on the rhs.

significant observational errors and the small spatial
scales sampled.

c. Aerosol indirect effect

Table 4 lists the global mean AIE values, and their
partitioning by surface type and hemisphere for all five

simulations. Included in the AIE is the relatively small
(;0.1 W m22) longwave contribution. The spatial dis-
tributions of annual mean AIE are shown in Fig. 6.
Changes in low cloud cover (DLCC) and liquid water
path (DLWP) from PI to PD in the five experiments are
also listed in Table 4.

Our global mean AIE values range from 21.55 to



700 VOLUME 59J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 2. Vertical distribution of sulfate (106 kg), OM (106 kg), and sea-salt (107 kg) mass for Jan and Jul
for the NEWCLD-M-5.0-P model run.
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FIG. 3. Comparison between model simulated sodium content (obtained from the sea-salt
concentrations) and observations at five locations for Jan and Jul for the NEWCLD-M-5.0-P
model run.

24.36 W m22, within the range of results reported for
other GCMs but generally somewhat higher than typical
values in previous studies. We also include in Table 4
an additional estimate for the AIE based on the differ-
ence in net radiation (NR) at top of atmosphere and the
direct effect (DE; for both clear and cloudy skies), re-
ferred to as NR 2 DE (Ghan et al. 2001a). The AIE is
estimated from the difference in NR2DE between sim-
ulations with PD aerosols and that with PI aerosols. The
two AIE estimates differ by less than ;0.3 W m22.
Neither estimate of the AIE is exact, because in a col-
umn in which both cloud and aerosol increase, the
change in reflection of sunlight by the aerosol is partly
due to the change in aerosol itself and partly due to the
cloud-induced change in the availability of sunlight for
the aerosol below (above) cloud to scatter. This can be
counted as either part of the direct effect or the AIE
and results in ambiguity in the AIE estimation. The
cloud radiative forcing approach has the disadvantage
that the sum of the direct and indirect effects does not
exactly equal the change in net radiation, but it has the
advantage of evaluating the cloud radiative impact in
the realistic background in which it exists. The NR2DE
approach gives an AIE and DE whose sum is exactly
the change in net radiation, but it overestimates the AIE
since the net radiation change due to clouds is estimated
for an atmosphere without aerosols. Both methods are
only approximate and the differences between them are
small compared to the overall uncertainty in the AIE
estimates.

A comparison of Tables 3 and 4 indicates that the
AIE is more sensitive to the PI aerosol distribution than
to the anthropogenic aerosol increase (with the one ex-
ception—NEWCLD-M-5.0). Since the PI burden in
these runs varies only because of cloud physics as-

sumptions, it is also clear that the AIE is quite sensitive
to uncertain aspects of cloud parameterization. In com-
mon with other models, the AIE is much stronger in the
Northern Hemisphere than in the Southern Hemisphere,
and the parameterization changes we test have little ef-
fect in the Southern Hemisphere in all but the most
sensitive simulation. In all five simulations the AIE is
stronger over land than over ocean, a feature we have
in common with some previous investigators but not
others. The differences between our results and previous
workers are largely due to differences in the definition
of the background aerosol and extent of aerosol–cloud
interaction, as follows.

1) Our AIE is a true difference between simulated PD
and PI conditions for all included aerosol types.
Some previous studies prescribe an elevated conti-
nental background aerosol (to mimic other anthro-
pogenic aerosols) and simulate only the AIE due to
anthropogenic sulfate, which lowers the global AIE
and shifts the maximum from land to ocean. Others
use an N–sulfate regression with different slopes
over land and ocean, which implicitly accomplishes
the same thing. Others prescribe a lower limit for N,
which can shift the peak AIE either onto land or
ocean depending on where the lower limit is assumed
to apply.

2) Some models use offline monthly mean sulfate fields
to alter cloud properties but do not allow the clouds
to feed back on the aerosol distribution. Our coupled
model is fully interactive, and thus the global aerosol
burden in the PI simulations can increase or decrease
depending on cloud sources and sinks of aerosol. In
general, the lower the PI aerosol burden, the larger
the AIE.
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FIG. 4. Regression of N (cm23) predicted from the NEWCLD-M-5.0-P run vs the simulated sulfate mass (mg m23) for Jul for all land
locations (topmost left panel) and for the three individual land locations. Also shown are the N–sulfate regressions from observations. The
solid and dashed lines are the regression curves for model and observations, respectively.
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FIG. 5. Same as Fig. 4, but for ocean locations.
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TABLE 4. Globally averaged annual means of the AIE evaluated by the model from the difference in cloud radiative forcing. Also included
are the NH and SH, and land and ocean averages. NR2DE refers to the AIE calculated as the difference between net radiation and the
direct aerosol effect. Global annual DLCC and DLWP between PD and PI emissions are also given.

Experiment

AIE (W m22)

Land Ocean NH SH Global

NR2DE
(W m22)

global DLCC (%)
DLWP
(g m22)

CTRL-R
NEWCLD-R
NEWCLD-M-7.5
NEWCLD-M-5.0
NEWCLD-M-5.0-P

23.13
22.39
27.83
22.91
24.08

21.31
21.22
22.99
21.42
21.75

22.56
21.82
26.16
22.39
23.41

21.09
21.27
22.56
21.29
21.41

21.82
21.55
24.36
21.84
22.41

21.95
21.72
24.68
21.81
22.53

0.15
0.22
1.18
0.33
0.56

21.10
20.30

7.80
0.90
1.90

TABLE 5. Globally averaged Jul means for reff, Nc, A–reff correlation, and column cloud susceptibility using the constant LWP assumption
(CS1) and column cloud susceptibility using the regression method (CS2) that is, when LWP varies. Model results are compared to observations
from Han et al. (1994, 1998a,b, 2000). also given are the AIE annual means.

Model/observations
AIE

(W m22)
reff

(mm)

Nc

(106

cm22)

A–reff

t # 15 t . 15

CS1 (1028 cm2)

t # 15 t . 15

CS2 (1028 cm2)

t # 15 t . 15

NEWCLD-R
CTRL-R
NEWCLD-M-5.0
NEWCLD-M-5.0-P
NEWCLD-M-7.5
Observations

21.55
21.82
21.84
22.41
24.36

—

9.79
10.76
11.26
6.75

10.36
11.44

4.97
3.96
2.07
6.03
4.68
4.43

0.33
0.31
0.36
0.36
0.34
0.30

0.09
0.07
0.15
0.12
0.03

20.19

7.84
8.75

14.13
5.00

11.98
8.29

4.18
6.05

13.63
3.19
6.35
2.70

0.32
0.76
4.74
1.09
3.01
3.19

0.75
0.77
0.10
0.17
0.40
1.15

3) Since the continental PI aerosol distribution cannot
be observed, different assumptions about back-
ground sources can significantly influence the re-
sulting AIE. For example, our control run assumes
a 10% yield of OM from terpenes and produces an
AIE of 21.82 W m22. A sensitivity test using a 5%
yield instead reduces the background aerosol burden
by 50% and increases the AIE to 22.56 W m22.

4) The GISS GCM surface winds are weaker than ob-
served, and hence the model underestimate the sea–
air transfer coefficient magnitude and the resulting
DMS source when the Liss and Merlivat (1986) pa-
rameterization is employed. This may imply that our
AIE over ocean is overestimated.

Comparing CTRL-R and NEWCLD-R illustrates the
effect of the change in vertical cloud distribution. Shift-
ing the low clouds upward by only 4 mb on average
(but with a 10% absolute decrease in low-cloud con-
tribution by the lowest layer) by itself reduces the mag-
nitude of the AIE by 0.3 W m22. This occurs both
because fewer of the clouds in NEWCLD-R are col-
located with the altitude of largest anthropogenic aerosol
increase, and because clouds in the lowest layer are most
likely to rain, which explains the slightly lower aerosol
burden in CTRL-R. Changes in LCC (0.15, 0.22%) and
LWP (21.1, 20.3 g m22) in these runs are due strictly
to feedbacks, since they include only the first indirect
effect, and are thus much smaller than those in the ‘‘M’’
runs, which allow for the second indirect effect.

Inclusion of the second indirect effect (NEWCLD-M-
7.5) significantly increases the AIE relative to NEWCLD-
R. However, the difference between these two cannot be

interpreted as the magnitude of the second indirect effect
itself, because qualitatively different autoconversion
schemes were used in the two experiments. In general, the
TC parameterization has much stronger autoconversion
rates at typical cloud LWC values than the scheme used
in Del Genio et al. (1996). As a result, the PI aerosol
burden is very low in NEWCLD-M-7.5. This, combined
with the actual second indirect effect, explains the excep-
tionally large overall AIE in this experiment. The runs
with the TC scheme have annual mean global LWP values
of 75–80 g m22, much closer to the satellite-retrieved value
of 81 g m22 reported by Greenwald et al. (1993) than the
118 g m22 value in NEWCLD-R. The PI-to-PD increase
in LWP (8 g m22) in NEWCLD-M-7.5 is about 10%, more
than twice as large as the 4% relative (1.2% absolute)
increase in LCC. Thus, the second indirect effect in our
GCM is due to both cloud lifetime and in-cloud liquid
water increases.

Since the TC scheme was designed for models that
resolve clouds, the critical radius that initiates autocon-
version is not a very physically meaningful parameter in
the context of a global model, which is intended to rep-
resent an ensemble of clouds and a distribution of LWC
values (Rotstayn 2000; Pincus and Klein 2000).
NEWCLD-M-5.0 tests the sensitivity of the AIE to this
effectively free parameter. By reducing the critical radius,
we make autoconversion easier and thus limit the mag-
nitude of the second indirect effect. The resulting de-
crease in magnitude of the AIE is dramatic (24.36 to
21.84 W m22), not only because the anthropogenic
changes in LCC (1.18% to 0.33%) and LWP (7.8 to 0.90
g m22) are smaller, but also because the efficient rainout
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FIG. 6. Global distribution of the AIE (W m22) for the five model
runs listed in Table 2. Global annual averages are listed on the rhs.

causes the anthropogenic increase in aerosol burden to
be much less in this experiment than in the other four.

The aerosol burden in NEWCLD-M-7.5 and espe-
cially NEWCLD-M-5.0 is significantly lower than that
in the earlier version of the coupled model analyzed in

detail by Koch et al. (1999), which did not include the
AIE. Although the actual global aerosol burden is un-
known, the earlier model did compare reasonably well
with point observations at a variety of locations. At the
same time, the scavenging scheme in that model assigns
too large a precipitating area of clouds compared to
satellite observations. NEWCLD-M-5.0-P thus weakens
the scavenging to offset the effect of the stronger au-
toconversion in the TC scheme. The resulting PI aerosol
burden is much larger, and the PD burden is much closer
to that in Koch et al. (1999). Thus, even though the PD
aerosol burden is the largest of all five experiments and
both indirect effects are included, the total AIE is only
22.41 W m22. Changes in LCC (0.6%) and LWP (2 g
m22) are intermediate between the other M experiments.

5. Comparisons with satellite data

Han et al. (1994, 1998a,b, 2000) have retrieved a
variety of parameters that are potentially diagnostic of
aerosol–cloud interactions from global satellite datasets.
In this section we compare analogous model parameters
to these retrievals to determine whether the satellite di-
agnostics constrain the AIE. Model outputs were pro-
cessed in the same way as were the satellite retrievals,
with only clouds with tops warmer than 273 K included
and parameters calculated either at cloud top or as col-
umn integrals as appropriate. Table 5 summarizes the
global mean results for July, in increasing order of the
simulated AIE magnitude, while Figs. 7–9 show the
global distributions of each parameter for the obser-
vations and for three simulations that span the range of
AIE values in the GCM. Impressions gained from Jan-
uary comparisons (not shown) were generally similar.

a. Droplet effective radius and column number
concentration

Figure 7 shows the distributions of reff (left) and col-
umn droplet number concentration Nc. Particle size is
proportional to (LWC/N)1/3 and column number con-
centration is the vertical integral of N, so we might
expect changes in reff and Nc from one experiment to
another to be negatively correlated. Table 5 shows that
with the exception of the extreme high AIE experiment
NEWCLD-M-7.5, this is the case. In the other four sim-
ulations, Nc is primarily controlled by the aerosol burden
(compare with Table 3). In general reff is underpredicted
by the model. In part, this may be explained by the fact
that the satellite-retrieved radius is characteristic of only
the top t ø 1 of the cloud. Since LWC increases with
height in nonprecipitating clouds, the cloud-top droplet
sizes tend to be larger than the mean throughout the
cloud. The GCM’s cloud-top value is the mean for the
highest cloud layer, which in many cases is the entire
depth of the cloud.

The GCM does produce the sense of particle size dif-
ferences over land and ocean. Its NH–SH differences are
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FIG. 7. Global distribution of model-simulated reff (mm) and Nc (106 cm22) for three of the five model runs listed in Table 2. ISCCP
observations from Han et al. (1994, 1998b) are also shown (topmost panels). Global averages are listed on the rhs.

much greater than the satellite-retrieved values, in part
because the model aerosol impact appears to be too large
over NH midlatitude oceans, and in part because the sat-
ellite retrievals include some regions of unusually small
particle sizes over SH desert regions that are probably dust

contamination. Here, Nc is somewhat overestimated over
NH land and slightly underestimated over SH land in most
of the simulations. Several of the runs produce ocean con-
centrations similar to those observed, but the observed
ocean minima tend to be at low latitudes, while the model
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ocean minima are in southern midlatitudes. The AIE does
not vary consistently with either reff or Nc, so although
they represent one component of a model validation strat-
egy, neither parameter by itself can be considered a di-
agnostic of the AIE.

b. Albedo–particle size correlations

Since the AIE is largely a response of cloud albedo
to aerosol-induced changes in cloud droplet number and
size, it is potentially more fruitful to relate albedo var-
iations to changes in either quantity than to utilize the
mean quantities themselves. Han et al. (1998a) corre-
lated albedo to droplet effective radius in the hope of
finding regional signatures of the AIE. They found the
expected negative relationship (brighter clouds with
smaller particle sizes) only for the optically thickest (t
. 15) 15%–20% of all low clouds. For the majority of
low clouds, albedo is positively correlated with particle
size. This occurs because for thinner clouds, dynami-
cally induced changes in LWC control particle size, hid-
ing any AIE in such clouds amidst the much larger
natural variability. For the thicker clouds, on the other
hand, the onset of precipitation may limit LWC increas-
es and allow the weak AIE signal to emerge (Nakajima
and Nakajima 1995; Lohmann et al. 2000).

Cloud albedo (A) in the GCM was estimated from the
calculated optical thickness using A 5 (1 2 g)t/[2 1
(1 2 g)t], where g 5 0.85 is the asymmetry parameter
for single scattering. The GCM produces albedo–par-
ticle size correlations for the thinner clouds that are quite
close to those observed (Table 5; Fig. 8, left). There is
little variation from one simulation to another, sup-
porting the idea that the correlation for these clouds is
mostly due to natural variability and not aerosol. The
GCM also simulates much smaller correlations overall
and some regions of negative albedo–particle size cor-
relation for the thicker clouds, although in no case is
the GCM global mean correlation for the thicker clouds
negative as is true for the satellite data. Even though
the lowest albedo–reff correlations occur in the run with
the highest AIE and the negative correlations in all runs
are a lot more pronounced in clouds in model layer 1
where the aerosol effect is the strongest, an inverse re-
lation between albedo–reff and the AIE is not observed
in Table 5. Thus, although this satellite relation may
offer some evidence of the AIE, it is apparently not
sensitive enough to distinguish between large and small
AIE simulations in our model.

c. Column susceptibility

Twomey (1991) first suggested that the albedos of
cleaner clouds with smaller N are more susceptible to
changes in N than are clouds with larger N. If LWC,
cloud physical thickness, and the droplet size distri-
bution are held constant, then the susceptibility dA/dN
5 A(1 2 A)/(3N). This relationship has been used to

evaluate the sensitivity of clouds to aerosols in different
regions (Taylor and McHaffie 1994; Platnick and Twom-
ey 1994). Cloud droplet numbers concentration is not
observed by satellites, but Han et al. (2000) have re-
trieved an analogous column cloud susceptibility de-
fined for constant LWP as CS1 5 dA/dNc 5 A(1 2 A)/
(3Nc). Furthermore, since LWP and size distribution
need not remain constant, Han et al. provide another
estimate of column susceptibility CS2 5 DA/DNc by
regressing A versus Nc.

Figure 9 shows both versions of column susceptibility
for thinner clouds, while Table 5 indicates the global
mean values for thinner and thicker clouds separately.
Excepting once again the extreme case NEWCLD-M-
7.5, differences in global mean CS1 values are inversely
correlated with differences in Nc, and thus CS1 provides
no independent information about cloud–aerosol inter-
actions. Likewise, model-data differences in the global
distribution of CS1 mimic the differences already de-
scribed for Nc.

To estimate CS2 in the GCM, A, and Nc values were
sampled every 6 h to capture synoptic variability, and
gridboxes with fewer than 10 points of warm cloud
occurrences over the month were excluded from the
regression analysis. Like Han et al., we find that sus-
ceptibilities are noticeably lower when LWP is not as-
sumed fixed, although our susceptibilities are signifi-
cantly smaller than those retrieved by Han et al. in three
of the five simulations. The GCM especially underes-
timates susceptibility over the oceans, and although the
model produces some gridpoints with negative suscep-
tibilities, they are randomly scattered over the oceans
rather than being confined to the eastern ocean marine
stratus regions as in the satellite data. Susceptibilities
are higher for the runs that include the second indirect
effect than for the runs that simulate only the first in-
direct effect. Also, the decrease in CS2 from thin to
thick clouds (as in observations) are only seen for the
M runs, suggesting that microphysics plays a bigger role
in determining cloud susceptibility than does radiation.
Furthermore, for the three runs that include the second
indirect effect, both susceptibilities increase (for the op-
tically thin cases) as the aerosol burden decreases, as
we might expect, but this is not a predictor of the re-
sulting AIE because of differences in PI aerosol.

6. Discussion and conclusions

Our suite of simulations differs from those performed
by previous workers in that we emphasize sensitivity of
the AIE to uncertain cloud parameterization elements
(formation, autoconversion, scavenging) that affect ma-
jor source and sink terms in the aerosol budgets. We
did not perform any tuning, so our global aerosol bur-
dens vary considerably among the different simulations
(Table 3). The global burdens of all aerosol types are
poorly constrained, since only point observations in
some parts of the world are available, with little vertical
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FIG. 8. Global distribution of the correlation coefficient between cloud albedo and reff for optically thin (t # 15) and thick (t . 15) clouds
for Jul for three of the five model runs listed in Table 2. ISCCP observations from Han et al. (1998a) are also shown (topmost panels).
Global averages are listed on the rhs.

profile information. The sulfur burdens in existing mod-
els range over about a factor of two (Koch et al. 1999).
Two of our simulations (NEWCLD-M-7.5, NEWCLD-
M-5.0) have very low aerosol burdens that are probably

inconsistent with available data, but the other three are
representative of the range found in other models.

Of even more importance is that the PI aerosol dis-
tribution is and will remain completely unconstrained
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FIG. 9. Global distribution of the column cloud susceptibility (1028 cm2) calculated using the constant LWP assumption, referred to as
CS1, and under varying LWP assumption, referred to as CS2, for optically thin (t # 15) clouds in Jul for three of the five model runs listed
in Table 2. ISCCP observations from Han et al. (2000) are also shown (topmost panels). Global averages are listed on the rhs.

by observations. The combined uncertainty in PD and
PI aerosol burden is the single largest uncertainty factor
for the AIE in our model. As a crude indicator of their
impact, we plot in Fig. 10 the AIE versus the ratio of

PD to PI sulfate burden. (A similar plot using PD and
PI sulfate 1 OM gives similar results, since sulfate is
more abundant and dominates the regression we use.)
In our limited sample of model runs, the magnitude of
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FIG. 10. Model simulations of the AIE (W m22) vs the ratio of PD
to PI sulfate aerosol burden for the five model runs listed in Table 2
and an additional sensitivity run (same as the CTRL-R run but with
a 50% reduction in the PI organic aerosol burden).

the AIE is strongly correlated with the fractional en-
hancement of aerosol burden by anthropogenic activi-
ties. Thus, we can weaken/strengthen the AIE by in-
creasing/decreasing the PI burden, and to a lesser extent
by decreasing/increasing the PD burden.

The sensitivity to the PI burden may partly explain
the absence of any weak AIE results in our set of sim-
ulations. Specifically, the GISS GCM’s DMS source is
significantly weaker than that of other models because
of the GCM’s weak surface winds; Koch et al. (1999)
report a 42% increase in the DMS source when the
model is forced by special sensor microwave/imager
winds instead. Applying such a change to Fig. 10, we
anticipate that our AIE might decrease in magnitude by
a few tenths of a watts per meters squared if this were
corrected. Other sources such as the OM yield from
terpenes increase the uncertainty. Even more impor-
tantly, the microphysical processes that remove aerosols
in GCMs can drastically alter the aerosol burden, and
proper representations of these processes that account
for subgrid LWC variability do not exist (Pincus and
Klein 2000). It is clear that using offline noninteractive
aerosol fields to force a GCM misses important feed-
backs of the clouds on the aerosol field.

Since it is impossible to specify the PI aerosol burden
accurately and uniformly across models, GCM estimates
of the AIE can be expected not to converge as long as
PI conditions are used as the baseline. Since the total
AIE from the start of the Industrial Revolution is of less
practical importance than the recent and future rate of
increase of the AIE, we suggest a shift in model strategy
that focuses on simulating the change in AIE over the
period for which the most reliable observations exist.
If the National Aeromatics and Space Administration
(NASA) Global Aerosol Climatology Project can gen-
erate an aerosol climatology for the past two decades
with reasonable accuracy, this time period might serve
as a better standard for different GCMs to operate on
common ground, so that remaining disagreements might
more easily be traced to differences in model physics.
Such a strategy might enhance the usefulness of satellite
products as well. None of the tested satellite diagnostics

constrains the AIE in our simulations (Table 5). How-
ever, much of the simulated variability in AIE in our
model results from PI aerosol burden variations, which
are unrelated to the current climate aerosol–cloud sen-
sitivity captured in the data.

Of more concern for observationally constraining the
AIE is the fact that aerosols appear to have a subtle
effect on clouds that is largely obscured by natural me-
teorological variability. Thus, unlike the global mean
greenhouse gas or direct aerosol forcing, neither of
which is greatly affected by dynamics, it will never be
possible to simply estimate the global AIE by using
‘‘observed’’ aerosol modifications of clouds as input to
a one-dimensional radiative transfer calculation. What
is needed is to combine the existing satellite products
with meteorological analysis fields to isolate specific
dynamical regimes within which the cloud variability
due to aerosols might be detected. A similar analysis
applied to a GCM might then be able to validate the
GCM’s process representations, and such a model might
then give a credible estimate of the AIE. In other words,
the AIE, which is usually grouped with climate forcings,
is more properly treated as a feedback that can only be
estimated within the model context.

Our study also highlights some needed observations.
Since aerosol concentrations decrease sharply with
height, it is important to accurately simulate the detailed
vertical distributions of clouds. Coarse vertical resolu-
tion models such as the one we use must clearly be
replaced with versions that adequately portray inver-
sions, decoupled boundary layers, and cloud turbulence
strength. Observations to validate such models are lack-
ing, though. ISCCP gives a first-order global estimate
of low cloud height but apparently contains biases in
marine stratus regions (Wang et al. 1999). Collocated
vertical profiles of cloud and aerosol at a number of
locations from surface lidars and radars may offer the
best hope of getting such information. Future field ex-
periments can be justified, but only if they sample cli-
mate regimes unobserved thus far, especially in regions
where other aerosols dominate sulfate, and only if they
measure N and all relevant aerosols and include sup-
porting large-scale and turbulence-scale meteorological
information.

Finally, it is instructive to compare the status of AIE
simulations to that of cloud feedback. The range of
cloud feedback estimates broadened considerably 10–
15 yr ago as new physics was introduced that increased
the number of possible feedback loops. Only recently
have observations begun to narrow that range. Diag-
nostic cloud schemes ultimately gave way to prognostic
cloud water parameterizations, not just because they
represent better physics but because they allow GCMs
to predict not only sources but also important sinks of
cloud water, which require the memory of the previous
cloud state. AIE simulations, by comparison, have ex-
isted for fewer than 10 yr. The range of estimates has
recently expanded, and no observational constraints
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have yet been identified that narrow the range. Prog-
nostic schemes have begun to appear, but their ultimate
fate will depend on whether droplet concentrations and
particle sizes on GCM-resolved space scales and time-
scales can be shown to deviate in important ways from
equilibrium with the simulated aerosol field. For the
foreseeable future, diagnostic approaches offer com-
parable predictive capability for estimates of the AIE.
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